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Abstract

New species arise from pre-existing species and inherit similar genomes and environments. This predicts greater simi-
larity of the tempo of molecular evolution between direct ancestors and descendants, resulting in autocorrelation of
evolutionary rates in the tree of life. Surprisingly, molecular sequence data have not confirmed this expectation, possibly
because available methods lack the power to detect autocorrelated rates. Here, we present a machine learning method,
CorrTest, to detect the presence of rate autocorrelation in large phylogenies. CorrTest is computationally efficient and
performs better than the available state-of-the-art method. Application of CorrTest reveals extensive rate autocorrela-
tion in DNA and amino acid sequence evolution of mammals, birds, insects, metazoans, plants, fungi, parasitic proto-
zoans, and prokaryotes. Therefore, rate autocorrelation is a common phenomenon throughout the tree of life. These
findings suggest concordance between molecular and nonmolecular evolutionary patterns, and they will foster unbiased
and precise dating of the tree of life.
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Introduction

Rates of molecular sequence evolution vary extensively
among species (Ho and Duchêne 2014; Dos Reis et al. 2016;
Kumar and Hedges 2016). The causes and consequences of
evolutionary rate variation among species are of fundamental
importance in molecular phylogenetics and systematics
(Kimura 1983; Lanfear et al. 2010; Lynch 2010). They inform
about the relationship among molecular, biological, and life
history traits and are a prerequisite for reliable estimation of
divergence times among species and genes (Ho and Duchêne
2014; Kumar and Hedges 2016).

Three decades ago, Gillespie (1984) proposed that molec-
ular evolutionary rates within a phylogeny will be autocorre-
lated due to similarities in genomes, biology, and
environments between ancestral species and their immediate
progeny. This idea led to statistical modeling of the variability
of evolutionary rates among branches and formed the basis of
the earliest methods for estimating divergence times without
assuming a strict molecular clock (Sanderson 1997; Thorne
et al. 1998; Kumar 2005; Ho and Duchêne 2014; Kumar and
Hedges 2016). However, the independent branch rate (IBR)
model has emerged as a strong alternative to the autocorre-
lated branch rate (ABR) model. The IBR model posits that
rates vary randomly throughout the tree, such that the

evolutionary rate similarity between an ancestor and its de-
scendant is, on average, no more than that between more
distantly related branches in a phylogeny (Drummond et al.
2006; Ho and Duchêne 2014).

The IBR model is now widely used in estimating divergence
times from molecular data for diverse groups of species. It has
been assumed for mammals (Drummond et al. 2006), birds
(Brown et al. 2008; Claramunt and Cracraft 2015; Prum et al.
2015), amphibians (Feng et al. 2017), plants (Moore and
Donoghue 2007; Bell et al. 2010; Smith et al. 2010; Linder
et al. 2011; Lu et al. 2014; Barreda et al. 2015; Barba-
Montoya et al. 2018), and viruses (Drummond et al. 2006;
Buck et al. 2016; Metsky et al. 2017). If the IBR model best
explains the variability of evolutionary rates, then we must
infer a decoupling of molecular and biological evolution. This
is because morphology, behavior, and other life history traits
are more similar between closely related species (Sargis and
Dagosto 2008; Lanfear et al. 2010; Cox and Hautier 2015) and
are correlated with taxonomic or geographic distance (Wyles
et al. 1983; Shao et al. 2016).

Alternatively, the widespread use of the IBR model
(Drummond et al. 2006; Moore and Donoghue 2007;
Brown et al. 2008; Bell et al. 2010; Smith et al. 2010; Linder
et al. 2011; Lu et al. 2014; Claramunt and Cracraft 2015; Prum
et al. 2015; Buck et al. 2016; Feng et al. 2017; Metsky et al.
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2017) may be due to the fact that the currently available
statistical tests lack sufficient power to reject the IBR model
(Ho et al. 2015). In fact, some studies report extensive branch
rate autocorrelation (e.g., Lepage et al. 2007), but others do
not agree (e.g., Linder et al. 2011).

Consequently, many researchers use both ABR and IBR
models when applying Bayesian methods to date divergences
(Wikström et al. 2001; Drummond et al. 2006; Bell et al. 2010;
Erwin et al. 2011; Meredith et al. 2011; dos Reis et al. 2012,
2015, 2018; Magall�on et al. 2013; Jarvis et al. 2014; Hertweck
et al. 2015; Foster et al. 2016; Liu et al. 2017; Pacheco et al.
2018; Takezaki 2018). This practice can result in widely differ-
ing time estimates under ABR and IBR models, which makes
biological interpretation challenging (Battistuzzi et al. 2010;
Christin et al. 2014; Dos Reis et al. 2014, 2015; Foster et al.
2016; Liu et al. 2017; Pacheco et al. 2018; Takezaki 2018). For
example, as compared with the ABR model, the use of IBR
model has been reported to produce 66% older estimates of
divergence times for two major groups of grasses (Christin
et al. 2014), 30% older divergence estimate for the origin of a
major group of mammal (Erinaceidea) (Meredith et al. 2011),
and 50% younger estimates for two clades of parasitic proto-
zoans in birds (Pacheco et al. 2018). The choice of branch rate

model also strongly influences posterior credibility intervals,
because these intervals are often wider under the ABR model
(Battistuzzi et al. 2010).

Therefore, we need a powerful method to accurately test
whether evolutionary rates are autocorrelated in a phylogeny.
Application of this method to molecular data sets represent-
ing taxonomic diversity across the tree of life will enable an
assessment of the preponderance of autocorrelated rates in
nature. Here, we introduce a new machine learning (McL)
approach (CorrTest) that shows high power to detect auto-
correlation between molecular branch rates. CorrTest is com-
putationally efficient, and its application to a large number of
data sets establishes the pervasiveness of rate autocorrelation
in the tree of life.

New Method
McL is widely used to solve problems in many fields, including
ecology (Christin et al. 2018; Willcock et al. 2018) and popu-
lation genetics (Saminadin-Peter et al. 2012; Schrider and
Kern 2016; Schrider and Kern 2018). We present a supervised
McL framework (Bzdok et al. 2018) used to build a predictive
model that distinguishes between ABR and IBR models, a
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FIG. 1. A flowchart showing an overview of the McL approach applied to develop the predictive model (CorrTest). We generated (a) 1,000 training
data sets that were simulated using IBR models and (b) 1,000 training data sets that were simulated using ABR models. The numerical state (c) for
all IBR data sets was 0 and (d) for all ABR data sets was 1. For each data set, we estimated a molecular phylogeny with branch lengths (e and f) and
computed qs, qad, d1, and d2 (g and h) that served as features during the supervised McL. (i) Supervised McL was used to develop a predictive
relationship between the input features and numerical states. (j) The predictive model produces a CorrScore for an input phylogeny with branch
lengths. The predictive model was (k) validated with 10- and 2-fold cross-validation tests, (l) tested using external simulated data, and then (m)
applied to empirical data to examine the prevalence of rate autocorrelation in the tree of life.
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major challenge in molecular phylogenetics and phylogenom-
ics. In our McL approach, the input is a molecular phylogeny
with branch lengths and the output is a classification that
corresponds to whether or not the evolutionary rates in the
phylogeny are autocorrelated among branches (ABR or IBR,
respectively). An overview of our McL approach is presented
in figure 1.

To build a predictive model, McL needs measurable prop-
erties (features) that can be derived from the input data
(phylogeny with branch lengths). The selection of informative
and discriminating features (fig. 1g and h) is critical to the
success of McL. We derive relative lineage rates using a
given molecular phylogeny with branch (“edge”) lengths
(fig. 1e and f) by using Tamura et al.’s (2018) method and
use these relative rates to generate informative features. The
use of the relative rate framework (RRF) is necessary because
we cannot derive branch rates without knowing node times
in the phylogeny. For example, we need to know node times
ti’s in figure 2 to convert branch lengths into branch rates, but
these node times are what investigators wish to estimate by
using a Bayesian approach that requires selection of a branch
rate model. In contrast, the estimation of relative lineage rates
does not require knowledge of divergence times. This is be-
cause an evolutionary lineage includes all the branches in the
descendant subtree (e.g., lineage a contains branches with
lengths b1, b2, and b5 in fig. 2) and the relative rate between
sister lineages is simply the ratio of the evolutionary depths of
the two lineages (Tamura et al. 2018). In figure 2, Ra and Rb are
two lineage rates whose relative value can be estimated by the
ratio of lineage lengths La and Lb, where the lineage length is a
function of lengths of all branches in the subtree. Tamura
et al. (2018) presented RRF to estimate these relative lineage
rates analytically by using branch lengths only. Furthermore,
Tamura et al.’s (2018) method generates relative lineage rates
such that all the lineage rates in a phylogeny are relative to the
rate of the ingroup root lineage (R0, fig. 2). Use of RRF enabled
us to develop a number of features for building a McL pre-
dictive model.

We considered the correlation between ancestral and de-
scendant lineage rates (qad), the correlation between the sis-
ter lineage rates (qs), and the decay in qad when one or two

intervening branches were skipped (d1 and d2, respectively) as
features (see Materials and Methods). qad was considered as a
feature because our analyses of simulated data showed that
qad was much higher for phylogenetic trees in which molec-
ular sequences evolved under an ABR model (0.96) than an
IBR model (0.54, fig. 3a). Importantly, qad is not expected to
be 0 under the IBR model because qad is a correlation be-
tween ancestral and descendant lineages, not independent
branches. An ancestral lineage includes all the lineages in the
descendant subtree, therefore, the evolutionary rate of an
ancestral lineage naturally depends on the evolutionary rates
of its descendant lineages in RRF (Tamura et al. 2018).
Therefore, ancestral and descendant lineage rates will be cor-
related. Although qad is >0, it showed distinct patterns for
ABR and IBR models and is, thus, a good candidate feature for
McL (fig. 3a).

As our second feature, we considered the correlation
between the sister lineages (qs), because qs was higher for
the ABR model (0.89) than the IBR model (0.00, fig. 3b).
Two additional features considered were the decay in qad

when one or two intervening branches were skipped (d1

and d2, respectively). We expect that qad will decay more
slowly under ABR than IBR, which was confirmed (fig. 3c).
The selected set of candidate features (qs, qad, d1, and d2)
can be measured for any phylogeny with branch lengths,
for example, derived from molecular data using the max-
imum likelihood method. They are then used to train the
McL classifier (fig. 1i and j). For this purpose, we need a
large set of phylogenies in which branch rates are auto-
correlated for which the numerical state 1 is assigned as
true positive case (fig. 1d) and phylogenies in which
branch rates are independent for which the numerical
state 0 is assigned as true negative case (fig. 1c).

However, there is a paucity of empirical data for which
ABR and IBR are firmly established. We, therefore, trained our
McL model on a simulated data set, a common practice in
McL applications when reliable real world training data sets
are few in number (Saminadin-Peter et al. 2012; Schrider and
Kern 2016; Ekbatani et al. 2017; Le et al. 2017). We used
computer simulations to generate 1,000 molecular data sets
that evolved with ABR models and 1,000 molecular data sets
that evolved with IBR models (fig. 1a and b). To ensure the
general utility of our model for analyses of diverse data, we
simulated molecular sequences with varying numbers of spe-
cies, degrees of rate autocorrelation, diversity of evolutionary
rates, and substitution pattern parameters (see Materials and
Methods). Candidate features (qs, qad, d1, and d2) were com-
puted for all 2,000 training data sets (fig. 1g and h), each of
which was associated with a numerical output state (0 and 1
for IBR and ABR, respectively; fig. 1c and d). These features
were used to build a predictive model by employing a logistic
regression (fig. 1j). This predictive model was then used to
generate a correlation score (CorrScore) for any phylogeny
with branch lengths.

We also developed a conventional statistical test
(CorrTest), based on CorrScore (0–1), to provide a P value
to decide whether the IBR model should be rejected. A high
CorrScore indicates a high probability that the branch rates

FIG. 2. An evolutionary tree showing branch lengths (b), lineage
lengths (L), lineage rates (R), and node times (t). Relative lineage rates
are computed from branch lengths using equations (34)–(39) in
Tamura et al. (2018). Node times and branch rates are not required
for estimating relative lineage rates.
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are autocorrelated. At a CorrScore >0.5, Type I error
(rejecting IBR when it was true) was <5%. Type I error of
1% (P value of 0.01) was achieved with a CorrScore >0.83
(fig. 3e). CorrTest is available at Github (https://github.com/
cathyqqtao/CorrTest; last accessed February 6, 2019.) and in
the MEGA X software (Kumar et al. 2018).

Results
We evaluated the sensitivity and specificity of our predictive
model using receiver operating characteristic (ROC) curves.
They measured the sensitivity of our method to detect rate
autocorrelation when it was present (true positive rate, TPR)
and when it was not present (false positive rate, FPR) at dif-
ferent CorrScore thresholds. TPR¼ TP/(TPþFN) and FPR¼
FP/(TN þ FP), where TP, FN, FP, and TN stand for true

positives, false negatives, false positives, and true negatives,
respectively. The ROC curve for McL using all four features
was the best, which led to the inclusion of all four features in
the predictive model (fig. 3d; Material and Methods). The area
under the ROC (AUROC) was 99%, with a 95% TPR (i.e., ABR
detection) achieved at the expense of only 5% FPR (fig. 3d,
black line). The area under the precision (PR) recall curve was
also extremely high (0.99; fig. 3d inset), where precision and
recall were defined as TP/(TP þ FP) and TP/(TP þ FN)
(¼TPR), respectively. It suggested that CorrTest detects the
presence of rate autocorrelation with very high accuracy
(¼[TP þ TN]/[TP þ FP þ FN þ TN]) and precision.

We also performed standard cross-validation tests (fig. 1k)
using the simulated data to evaluate the accuracy of the
predictive model when only a subset of data are used for
training. In the 10-fold cross-validation, the predictive model

(a) (b)

(e)

-lo
g(
P-

va
lu

e)

De
sc

en
da

nt
 li

ne
ag

e 
ra

te
Autocorrelated rates
ρad = 0.96

Independent rates
ρad = 0.54

0.
0

0.
5

(d)

0.0 1.0

0.
6

1.
0

Recall

Pr
ec

is
io

n

ρad (AUROC = 0.98, AUPR = 0.98)
ρs (AUROC = 0.99, AUPR = 0.99)

All  (AUROC = 0.99, AUPR = 0.99)

0.10.0

0.1
5.0

Tr
ue

 p
os

i�
ve

 ra
te

 (T
PR

)

False posi�ve rate (FPR)

0.0 0.5

Ancestral lineage rate

0.0 0.5

Autocorrelated rates
ρs = 0.89

Independent rates
ρs = 0.00

Ra
te

 o
n 

si
st

er
 li

ne
ag

e 
2

0.
0

0.
5

Rate on sister lineage 1

(c)

0 2

An
ce

st
or

-d
es

ce
nd

an
t 

co
rr

el
a�

on
 d

ec
ay

 (%
)

-7
0

0

Number of skipped branches
1

CorrScore = 0.83
P-value < 0.01

CorrScore = 0.5
P-value < 0.05

0.
0

3.
0

0.10.0
CorrScore

FIG. 3. The relationship of (a) ancestral and direct descendant lineage rates and (b) sister lineage rates when the simulated evolutionary rates were
autocorrelated with each other (red) or varied independently (blue). The correlation coefficients are shown. (c) The decay of correlation between
ancestral and descendant lineages when we skip one intervening branch (d1) and when we skip two intervening branches (d2). Percent decay
values are shown. (d) ROC and PR curves (inset) of CorrTest for detecting branch rate model by using only the feature of ancestor–descendant
lineage rates correlation (qad, green), only the feature of sister lineage rates correlation (qs, orange), and all four features (all, black). The area under
the curve is provided. (e) The relationship between the CorrScore produced by the McL model and the P value. IBR model can be rejected when the
CorrScore is >0.83 at a significant level of P< 0.01, or when the CorrScore is >0.5 at P< 0.05.

Tao et al. . doi:10.1093/molbev/msz014 MBE

814

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/36/4/811/5299489 by Tem
ple U

niversity user on 25 April 2019

https://github.com/cathyqqtao/CorrTest
https://github.com/cathyqqtao/CorrTest


was developed using 90% of the simulated training data sets,
and then its performance was tested on the remaining 10% of
the data sets. The AUROC was >0.99 and the accuracy was
high (>94%). Even in the 2-fold cross-validation, where only
half of the data sets (500 ABR and 500 IBR data sets) were
used for training the model, leaving the remaining half for
testing, the AUROC was>0.99 and the classification accuracy
was>92%. This suggested that the predictive model is robust
to the size of the training set used.

We tested the performance of CorrTest on a large collec-
tion of simulated data sets where the correct rate model is
known. In these data sets (Tamura et al. 2012), different soft-
ware and simulation schemes were used to generate sequen-
ces with a wide range of empirically derived GþC contents,
transversion/transition ratios, and evolutionary rates under
both ABR and IBR models (see Materials and Methods).
CorrTest accuracy was >94% in detecting ABR and IBR cor-
rectly for data sets that were simulated with low and high
GþC contents (fig. 4a), small and large transition/transver-
sion ratios (fig. 4b), and different rates of evolution (fig. 4c). As
expected, CorrTest performed best on data sets that con-
tained more and longer sequences (fig. 4d).

In the above analyses, we used the correct tree topology
and nucleotide substitution model (Hasegawa–Kishino–
Yano [HKY] model (Hasegawa et al. 1985) with five discrete
gamma categories). We relaxed this requirement and evalu-
ated CorrTest by inferring the tree topology and branch
lengths using the Neighbor-Joining method (Saitou and Nei

1987) with an oversimplified Kimura’s (1980) two-parameter
substitution model. The estimation of the total number of
substitutions between sequences was biased because inequal-
ity of nucleotide frequencies and variation of evolutionary
rate across sites were not considered. Naturally, many inferred
phylogenies contained topological errors, but we found the
accuracy of CorrTest to be high as long as the data set con-
tained >100 sequences of length >1,000 base pairs (fig. 4e).
CorrTest also performed well even when 20% of the nontrivial
tree bipartitions were incorrect in the inferred phylogeny
(fig. 4f, see Materials and Methods). Therefore, CorrTest will
be most reliable for large data sets and is relatively robust to
errors in phylogenetic inference.

CorrTest versus Bayes Factor Analysis
We compared the performance of CorrTest with that of the
Bayes factor (BF) approach. Because the BF method is com-
putationally demanding, we limited our comparison to 100
data sets containing 100 sequences each (see Material and
Methods). We computed BFs by using the stepping-stone
sampling (SS) method (see Materials and Methods). BF via
stepping-stone sampling (BF-SS) detected autocorrelation
(P< 0.05) for 33% of the ABR data sets (fig. 5a, red curve in
the ABR zone). Marginal log-likelihoods under the ABR model
were very similar to or lower than those for the IBR model,
which led to the failure to detect autocorrelation for 67% of
ABR data sets. Therefore, BF-SS was conservative in rejecting
the IBR model, as has been reported (Ho et al. 2015). CorrTest
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correctly detected the ABR model for 88% of the data sets
(P< 0.05; fig. 5b, red curve in ABR zone). For IBR data sets, BF-
SS correctly detected the IBR model for 89% (fig. 5a, blue
curve in the IBR zone), whereas CorrTest correctly detected
IBR model for 86% (fig. 5b, blue curve in the IBR zone).
Therefore, BF-SS performs well in correctly classifying phylog-
enies that evolve under an IBR model, but not an ABR model.
The power of CorrTest to correctly infer the ABR model is

responsible for its higher overall accuracy (87% vs. 61% for BF-
SS). Such a difference in accuracy was observed at different
levels of statistical significance (fig. 5c) for data sets that
evolved with high (v< 0.1), moderate (0.1� v< 0.2) and
low (v� 0.2) degree of rate autocorrelation (fig. 5d), where
v is the parameter controlling the degree of rate autocorre-
lation (Kishino et al. 2001). However, the accuracy of CorrTest
and BF-SS was similar in detecting IBR (fig. 5e). The accuracy
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SS) and CorrTest analyses. Posterior probabilities for ABR in BF-SS analysis are derived using the log-likelihood patterns in (a). CorrTest P values are
derived using the CorrScore pattern in (b). (d) The accuracy of identifying ABR model for data sets simulated with low (v� 0.2), moderate
(0.1� v< 0.2), and high (v< 0.1) levels of rate autocorrelation in Kishino et al.’s (2001) model. (e) The accuracy of identifying IBR model for data
sets simulated at different degrees of rate variation in Drummond et al. (2006): low (standard deviation<0.2), moderate (0.2� standard deviation
< 0.3), and high (standard deviation � 0.3).
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was slightly higher for CorrTest than BF-SS for phylogenies
with high (standard deviation � 0.3) and low (standard de-
viation < 0.2) degree of independent rate variation, but the
reverse was true for phylogenies with moderate
(0.2� standard deviation < 0.3) degree of independent
rate variation. These comparisons suggest that the McL
method enables highly accurate detection of rate autocorre-
lation in a given phylogeny and presents an alternative to BF
analyses for large data sets.

Autocorrelation of Rates Is Common in Molecular
Evolution
The high accuracy and fast computational speed of CorrTest
enabled us to test the presence of autocorrelation in 17 large
data sets from 11 published studies of eukaryotic species and
2 published studies of prokaryotic species encompassing di-
verse groups across the tree life. This included nuclear, mito-
chondrial, and plastid DNA, and protein sequences from
mammals, birds, insects, metazoans, plants, fungi, parasitic
protozoans, and prokaryotes (table 1). CorrTest rejected the
IBR model for all data sets (P< 0.05). In these analyses, a time-
reversible process was assumed for substitutions of nucleo-
tides and amino acids in the original studies (table 1).
However, the violation of this assumption may produce bi-
ased results in phylogenetic analysis (Jayaswal et al. 2014). We,
therefore, applied an unrestricted substitution model (Yang

1994) for analyzing all the nucleotide data sets and found that
CorrTest rejected the IBR model in every case (P< 0.05). This
robustness stems from the fact that the branch lengths esti-
mated under the time-reversible and the unrestricted model
are highly correlated for these data (r2 > 0.99). This could be
the reason why CorrTest produced reliable results even when
an oversimplified model (Kimura 1980) was used for analyz-
ing computer simulated data (fig. 4e and f).

These results suggest that the autocorrelation of rates
among lineages is very common in molecular phylogenies.
This pattern contrasts starkly with those reported in many
previous studies (Drummond et al. 2006; Moore and
Donoghue 2007; Brown et al. 2008; Bell et al. 2010; Smith
et al. 2010; Linder et al. 2011; Jarvis et al. 2014; Lu et al.
2014; Barreda et al. 2015; Claramunt and Cracraft 2015;
Prum et al. 2015; Feng et al. 2017; Barba-Montoya et al.
2018). In fact, all but three data sets (Battistuzzi and
Hedges 2009; Erwin et al. 2011; Calteau et al. 2014) received
very high CorrScores, resulting in extremely significant P val-
ues (P< 0.01). The IBR model was also rejected for the three
data sets (P< 0.05), but their CorrScores were not as high,
likely because of limited or biased sampling of the evolution-
ary diversity. For example, the metazoan data set (Erwin et al.
2011) contains sequences primarily from highly divergent
species that share common ancestors hundreds of millions
of years ago. In this case, tip branches in the phylogeny are
long and their evolutionary rates are influenced by many

Table 1. Patterns of Rate Autocorrelation Inferred Using the CorrTest Approach.

Taxonomic Group Data Type Sequence
Counta

Sequence
Length

Substitution
Model

Rate
Modelb

Corr
Score

P value 1/�c Reference

Mammals (A) Nuclear 4-fold degenerate sites 138 1,671 GTR 1 C ABR & IBR 0.98 <0.001 3.21 Meredith et al. (2011)
Mammals (B) Nuclear third codon positions 138 11,010 GTR 1 C ABR & IBR 0.99 <0.001 4.42d Meredith et al. (2011)
Mammals (C) Nuclear proteins 138 11,010 JTT 1 C ABR & IBR 0.99 <0.001 3.11 Meredith et al. (2011)
Mammals (D) Mitochondrial DNA 271 7,370 HKY 1 C ABR 0.98 <0.001 3.77e Dos Reis et al. (2012)
Birds (A) Nuclear DNA 198 101,781 GTR 1 C IBR 1.00 <0.001 2.07f Prum et al. (2015)
Birds (B) Nuclear third codon positions 222 1,364 GTR 1 C IBR 1.00 <0.001 2.11 Claramunt and

Cracraft (2015)
Birds (C) Nuclear first and second

codon positions
222 2,728 GTR 1 C IBR 1.00 <0.001 2.53 Claramunt and

Cracraft (2015)
Insects Nuclear proteins 143 220,091 LG 1 C IBR 1.00 <0.001 8.68g Misof et al. (2014)
Metazoans Mitochondrial and nuclear

proteins
113 2,049 LG 1 C ABR 0.65 <0.05 40.00 Erwin et al. (2011)

Plants (A) Plastid third codon positions 335 19,449 GTR 1 C NA 1.00 <0.001 2.28 Ruhfel et al. (2014)
Plants (B) Plastid proteins 335 19,449 JTT 1 C NA 1.00 <0.001 2.46 Ruhfel et al. (2014)
Plants (C) Nuclear first and second

codon positions
99 290,718 GTR 1 C NA 1.00 <0.001 5.50 Wickett et al. (2014)

Plants (D) Chloroplast and nuclear DNA 124 5,992 GTR 1 C IBR 1.00 <0.001 2.64 Beaulieu et al. (2015)
Fungi Nuclear proteins 85 609,772 LG 1 C NA 0.97 <0.001 3.78 Shen et al. (2016)
Parasitic

protozoans
Mitochondrial DNA 91 6,863 HKY 1 C ABR & IBR 0.87 <0.01 2.41 Pacheco et al. (2018)

Prokaryotes (A) Nuclear proteins 197 6,884 JTT 1 C ABR 0.79 <0.05 2.54 Battistuzzi and
Hedges (2009)

Prokaryotes (B) Nuclear proteins 126 3,145 JTT 1 C NA 0.83 <0.05 1.23 Calteau et al. (2014)

aCounts exclude outgroup taxa.
bThe branch rate model used in the original study. ABR, autocorrelated branch rate model; IBR, independent branch rate model; NA, no rate model information available.
c1/� is the inverse of the autocorrelation parameter that is estimated by MCMCTree using the ABR model in the time unit of 100 My.
d1/v were 2.13 and 2.09 for each subtree in mammals (B).
e1/v were 3.73, 1.04, and 2.47 for each subtree in mammals (D).
f1/v were 1.60 and 2.07 for each subtree in birds (A).
g1/v were 17.24 and 9.62 for each subtree in insects.
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unsampled lineages. Such sampling effects weaken the rate
autocorrelation signal. We verified this behavior via an anal-
ysis of simulated data and found that CorrScores decreased
when density of taxon sampling was lower (fig. 6). Overall,
CorrTest detected rate autocorrelation in all the empirical
data sets.

Magnitude of Rate Autocorrelation in Molecular Data
CorrScore is influenced by the size of the data set in addition
to the degree of autocorrelation, so it is not a direct measure
of the degree of rate autocorrelation (effect size) in a phylog-
eny. Instead, one should use a Bayesian approach to estimate
the degree of rate autocorrelation, for example, under Kishino
et al.’s (2001) autocorrelated rate model. In this model, a
single parameter (�) captures the degree of autocorrelation
among branches in a phylogenetic tree. A low value of �
indicates high autocorrelation, so, we use the inverse of v to
represent the degree of rate autocorrelation. MCMCTree
(Yang 2007) analyses of 100 simulated data sets (see
Materials and Methods) confirmed that the estimated v
was related linearly with the true value (fig. 7). Based on
the results from the analysis of empirical data sets, we suggest
that 1/v> 3 be considered high autocorrelation, 1/v between
1 and 3 be considered moderate autocorrelation, and 1/v
below 1 be considered weak autocorrelation. Based on this
ad hoc criterion, we may conclude that rate autocorrelation is
moderate to high for empirical data sets examined for species
across the tree of life.

Other interesting patterns emerge from this analysis. First,
rate autocorrelation is highly significant for mutational rates
(¼substitution rate at neutral positions), which are expected
to be similar in sister species because they inherit cellular
machinery from a common ancestor (table 1). The substitu-
tion rates at the third codon positions and the 4-fold degen-
erate sites are considered to be a good proxy of synonymous
substitution rate, because they are largely neutral and are the
best reflection of mutation rates (Kumar and Subramanian

2002). For example, the mammalian data sets A and B, which
consisted of the 4-fold degenerate sites and the third codon
positions, received high CorrScores of 0.99 and 0.98, respec-
tively (P< 0.001). Second, our model detected a strong signal
of autocorrelation among amino acid substitution rates,
which were dictated by natural selection (table 1). For exam-
ple, mammalian data set C received a high CorrScore of 0.99
in the proteins encoded in the same genes in the data sets of
third codon positions (mammalian data set B) and 4-fold
degenerate sites (mammalian data set A). Bayesian analyses
also showed that the degree of rate autocorrelation is similar:
inverse of v was 3.21 in 4-fold degenerate sites and 3.11 in
amino acid sequences for mammalian data sets. Third, mu-
tational and substitution rates in nuclear genomes and sub-
stitution rates in mitochondrial genomes are highly
autocorrelated (P< 0.05, table 1) (synonymous substitution
rate was not used for mitochondrial data). These results es-
tablish that molecular and nonmolecular evolutionary pat-
terns are concordant, because morphological characteristics
are correlated with taxonomic or geographic distance (Wyles
et al. 1983; Sargis and Dagosto 2008; Lanfear et al. 2010; Cox
and Hautier 2015; Shao et al. 2016).

Discussion
Our results demonstrate that a McL framework is useful to
develop a method to detect the presence of rate autocorre-
lation among branches in a phylogeny. This method yields
CorrScore estimates that enables development of a conven-
tional statistical test (CorrTest) to detect autocorrelation.
This method can be used for data sets with small (50–100)
and large numbers of sequences, as supported by high accu-
racy achieved by CorrTest in the analysis of simulated data
sets (fig. 4). We also evaluated if higher accuracy could be
achieved by building specific predictive models that were
trained separately using data with different ranges of the
number of sequences (n): M100 (n� 100), M200
(100< n� 200), M300 (200< n� 300), and M400
(n> 300). A specific threshold for CorrScore that corre-
sponded to certain P value was determined for each training
subset and then tested using Tamura et al.’s (2012) simulated
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FIG. 6. The distribution of CorrScore for data sets (Tamura et al. 2012)
with different taxon sampling densities. The CorrScore decreases
when the density of taxon sampling is lower, as there is much less
information to discriminate between ABR and IBR models. Red
dashed lines mark two statistical significance levels of 5% and 1%.
Results are summarized from 100 simulated data sets for each taxon
sampling category.
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line represents the best-fit regression line, which has a slope of 1.09.
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data with the corresponding number of sequences. For ex-
ample, we used the threshold determined for the model
trained with small data (M100) on the test data that con-
tained �100 sequences, and used the threshold determined
for the model trained with large data (M400) on the large test
data (400 sequences). We found that the accuracy obtained by
using the specific thresholds determined for data sets with
different numbers of sequences (M100–M400) (fig. 8) was sim-
ilar to the accuracy obtained by using a global threshold
(fig. 4d–f). This is because the McL algorithm automatically
incorporated the impact of the number of sequences when
determining the relationship of four selected features (qs, qad,
d1, and d2). This justifies the usage of the globally trained
CorrTest that we used in all the empirical analyses reported
here.

No single branch rate model may be adequate for
Bayesian dating analyses, and one may need to use a mix-
ture of models because different groups of species and
genes in a large phylogeny may have evolved with different
levels of autocorrelation (e.g., Lartillot et al. 2016; Tamura
et al. 2018). In this sense, results produced by CorrTest
(and by BF) analyses primarily detect the presence of rate
autocorrelation, but they do not tell us if the rate auto-
correlation exists in every clade of a phylogeny or if the
degree of autocorrelation is the same in all the clades. One
may apply CorrTest to individual clades (subtrees) to eval-
uate these patterns. For example, we divided a few large
empirical phylogenies (Meredith et al. 2011; Dos Reis et al.
2012; Misof et al. 2014; Prum et al. 2015) into subtrees with
at least 50 sequences and applied CorrTest on subtrees to
detect the existence of clade-specific rate autocorrelation.
These analyses showed a wide range of 1/v values, which
was consistent with the large range of the autocorrelation
parameter values observed for different data sets we ana-
lyzed (1.2< 1/v< 40, table 1). That is, the degree of auto-
correlation likely varies among different types of genes,
different types of substitutions, and in different taxonomic
groups. In the future, it will be useful to identify such
patterns at micro- and macro-evolutionary scales and to

elucidate mechanistic underpinnings of the differences
observed.

Conclusion
We have presented a fast, scalable, and accurate method
(CorrTest) to detect the presence of branch rate autocorre-
lation in a phylogeny. In addition to molecular data, CorrTest
may be used for testing autocorrelation of rates in nonmo-
lecular data, for example, morphological characteristics, be-
cause the features required for CorrTest can be calculated for
any phylogeny with branch lengths. The application of
CorrTest to a large number of data sets addressed an endur-
ing question in evolutionary biology: Are the molecular rates
of change between species correlated or independent? We
find that the rate autocorrelation is the rule, rather than the
exception. So, it will be best to employ an ABR model in
molecular dating analyses in studies of biodiversity, phylo-
geography, development, and genome evolution. However,
when in doubt, one may conduct CorrTest, which is partic-
ularly effective for analyzing large data sets. We also expect
CorrTest to be useful in analyzing many other large data sets,
revealing both the extent of autocorrelated evolutionary rates
in the tree of life and the exceptions to this rule. Discovery of
genes, gene families, and species groups in which branch rates
are evolving without significant autocorrelation will be pre-
cursors to elucidating mechanistic underpinnings of new bi-
ological phenomena.

Materials and Methods

McL Model
Training Data for McL
We simulated nucleotide alignments using IBR and ABR
models using the NELSI package (Ho et al. 2015) with a variety
of empirically derived parameter values and parameters used
in previous studies (Rosenberg and Kumar 2003; Ho et al.
2015). In IBR cases, branch-specific rates were drawn from a
lognormal distribution with a mean gene-by-gene substitu-
tion rate and a standard deviation (in log-scale) that varied
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from 0.1 to 0.4, previously used in a study simulating inde-
pendent rates with different levels of variation (Ho et al.
2015). In ABR cases, branch-specific rates were simulated un-
der an autocorrelated process (Kishino et al. 2001), using
equation (10.9) in Yang (2014). The initial rate was set as
the mean rate derived from an empirical gene and an auto-
correlated parameter, �, that was randomly chosen from a
uniform distribution ranging from 0.01 to 0.3, following a
previous simulation of low, moderate and high degree of
rate autocorrelation (Ho et al. 2015). We used SeqGen
(Grassly et al. 1997) to generate alignments under the HKY
model (Hasegawa et al. 1985) with four discrete gamma cat-
egories. This process used a master phylogeny, consisting of
60–400 ingroup taxa randomly sampled from the bony-
vertebrate clade in the TimeTree of Life (Hedges and
Kumar 2009). Mean evolutionary rates, GþC contents, tran-
sition/transversion ratios and numbers of sites for simulation
were derived from empirical distributions (Rosenberg and
Kumar 2003). One thousand molecular data sets were gen-
erated under ABR and IBR models separately and these 2,000
simulated data sets were used as training data in building the
McL model.

Calculation of Features for McL
Lineage-specific rate estimates (Ri’s) were obtained using
equations (28)–(31) and (34)–(39) in Tamura et al. (2018).
For any given node in the phylogeny (e.g., node 5 in fig. 2), we
extracted the relative rates of its ancestral lineage (e.g., Ra in
fig. 2) and two direct descendant lineages (e.g., R1 and R2 in
fig. 2). Then, we calculated correlation between the ancestral
lineage and its direct descendant lineage rate to obtain esti-
mates of ancestor–descendant rate correlation (qad). We also
calculated correlation between sister lineage rates (qs). We
need to assign labels to lineage rates of each sister pair to
determine which lineage is the first sister lineage and which
lineage is the second sister lineage, for example, (R1 and R2) or
(R2 and R1) in fig. 2. If rates of the first sister lineages are always
higher than rates of the second sister lineages, an artificial
correlation will be generated between sister lineage rates.
To avoid this possibility, we randomly labeled sister lineages.
The labeling of sister pairs have negligible impact (<2%) on qs

when the number of sequences in the phylogeny is not too
small (>50). For smaller data sets, we found that it is best to
generate multiple qs estimates, each using randomly labeled
sister pairs, to eliminate bias that may result from the arbi-
trary designation of sister pairs. In this case, we recommend
using the mean qs from multiple replicates in the CorrTest
analysis. To avoid the assumption of linear correlation be-
tween lineages, we used Spearman rank correlation because
it can detect both linear and nonlinear correlation between
two vectors. Two additional features were included in McL
model: d1 and d2, which are the decay of qad when one or two
intervening branches are skipped. We first estimated qad_skip1

as the correlation between rates where the ancestor and de-
scendant were separated by one intervening branch, and
qad_skip2 as the correlation between rates where the ancestor
and descendant were separated by two intervening branches.

This skipping reduces ancestor–descendant correlation,
which we then used to derive the decay of correlation values
by using equations d1 ¼ (qad � qad_skip1)/qad and d2 ¼ (qad

� qad_skip2)/qad. These two features improved the accuracy of
our model slightly. In the analysis of empirical data sets, we
found that a large amount of missing data (>50%) can result
in unreliable estimates of branch lengths and other phyloge-
netic errors (Wiens and Moen 2008; Lemmon et al. 2009;
Filipski et al. 2014; Xi et al. 2016; Marin and Hedges 2018).
In this case, we recommend computing selected features (qs,
qad, d1, and d2) using only those lineage pairs for which>50%
of the positions contain valid data, or removing sequences
with a large amount of missing data.

Building the McL Predictive Model
We trained a predictive model with only qad, only qs or all
four features (qs, qad, d1, and d2) using 2,000 simulated train-
ing data sets (1,000 with ABR model and 1,000 with IBR
model). For each set of training data, we inferred the branch
lengths from the molecular sequences with a fixed topology
first and used these inferred branch lengths to estimate rel-
ative lineage rates for computing selected features. A numer-
ical state of 1 was given to true positive cases (autocorrelated
rates) and 0 was assigned to true negative cases (independent
rates). Then, a predictive model was generated via logistic
regression in the skit-learn model (Pedregosa et al. 2011),
which is a python toolbox for data mining and data analysis
using McL algorithms. This model contains the relationship
between the numerical state and the selected features.
Therefore, for any phylogeny with branch lengths, we can
calculate features and apply the predictive model to generate
a numerical output value between 0 and 1. The resulting
value is referred as the CorrScore. A high CorrScore suggests
that the rates are more likely to be autocorrelated. Every
CorrScore associates with a Type I error (P value), which is
the percentage of IBR cases that are incorrectly predicted as
ABR. We found that Type I error of 5% (P value of 0.05) was
achieved with a CorrScore >0.5, and Type I error of 1% was
achieved with a CorrScore >0.83. Therefore, we developed a
conventional statistical test (CorrTest) based on CorrScore.
CorrScores of 0.5 and 0.83 were used as the global thresholds
at 5% and 1% significant levels. Using the same procedure, we
also trained specific predictive models using training data
with different numbers of sequences (n): M100 (n� 100),
M200 (100< n� 200), M300 (200< n� 300), and M400
(n> 300) and determined specific threshold for CorrScore
for each model. CorrScores of 0.69, 0.61, 0.57, and 0.31 were
thresholds for M100, M200, M300, and M400 at 5% significant
level, respectively. CorrScores of 0.84, 0.86, 0.88, and 0.73 were
thresholds for M100, M200, M300, and M400 at 1% significant
level, respectively.

Test Data Sets
Tamura et al.’s (2012) simulated data sets were used to
evaluate CorrTest’s performance. This allowed us to test
the performance of our method on ABR and IBR data sets
with different GþC contents (range 39–82%), transition/
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transversion ratios (range 1.9–6.0), and evolutionary rates
(range 1.35–2.60 substitution per site per billion years). In
IBR simulations, Tamura et al. (2012) used a uniform dis-
tribution in which branch rates were sampled from a uni-
form density in the interval [(1 � x).r – (1 þ x).r], where r
is the mean evolutionary rate and the x is the degree of
rate variation (0.5 or 1.0 for 50% and 100% rate variation).
For ABR simulations, Tamura et al. (2012) used Kishino
et al.’s (2001) model with �¼ 1. In both scenarios, sequen-
ces were simulated on a master phylogeny of 400 ingroup
taxa using the HKY substitution model with 5 discrete
gamma categories. We analyzed 100 data sets simulated
using the ABR model and 100 data sets simulated using
the IBR model (50% rate variation). We also randomly
sampled 50, 100, 200, and 300 sequences from the full
set of 400 ingroup sequences, and conducted CorrTest
using the correct topology and error-prone topology in-
ferred by the Neighbor-Joining method (Saitou and Nei
1987) with an oversimplified substitution model of
Kimura (1980) with both global and specific CorrScore
thresholds. The percentage of incorrect inferred tree
bipartitions (clades) was calculated by d/[2(m� 3)] where
d was the Robinson and Foulds’s (1981) topological dis-
tance between inferred and true topologies and m was the
number of sequences. In addition, we also tested
CorrTest’s performance on 100 data sets simulated by
Tamura et al. (2012) under an IBR model with 100% rate
variation. CorrTest worked perfectly (100% accuracy) for
these data sets (results not shown).

In addition to above analyses, we conducted another set of
simulations to generate 100 data sets using IBR (independent
lognormal distribution) and ABR (autocorrelated lognormal
distribution) (Kishino et al. 2001) models, each using the same
strategy as in training data simulation (described above) on a
master phylogeny of 100 taxa randomly sampled from the
bony-vertebrate clade in the TimeTree of Life (Hedges and
Kumar 2009). These 200 data sets were used to conduct
CorrTest and BF analyses and to obtain the autocorrelation
parameter (v) in MCMCTree (Yang 2007).

CorrTest Analyses
All CorrTest analyses were conducted using customized R
code (available at https://github.com/cathyqqtao/CorrTest,
last accessed February 6, 2019). We first estimated branch
lengths of a phylogeny for sequence alignments using the
maximum likelihood method with the correct substitution
model and the correct topology in MEGA 7 command line
version (Kumar et al. 2012; Kumar et al. 2016). We used
Neighbor-Joining method to estimate topology and branch
lengths with Kimura’s (1980) two-parameter substitution
model and without the assumption of rate variation across
sites under the gamma distribution in MEGA 7 command line
version, when we tested the robustness of our model to to-
pological error. We then used the estimated branch lengths
to compute relative lineage rates using RRF (Tamura et al.
2012, 2018) and calculated the value of selected features (qs,
qad, d1, and d2) to obtain the CorrScore. We conducted

CorrTest on the CorrScore to estimate the P value of detect-
ing rate autocorrealtion. No calibration was needed for
CorrTest analyses. CorrTest is also available in the MEGA X
software (Kumar et al. 2018).

BF Analyses
We computed the BF-SS (Xie et al. 2011) with n¼ 20 and
a¼ 5 using mcmc3r (Dos Reis et al. 2018). BF-SS estimates the
marginal likelihoods using the idea from importance sam-
pling, a common practice in statistics, to construct a path
between prior and posterior distributions of a model (Xie
et al. 2011; Baele et al. 2013). We chose BF-SS because the
harmonic mean estimator has many statistical shortcomings
(Lepage et al. 2007; Xie et al. 2011; Baele et al. 2013) and
thermodynamic integration (Lartillot and Philippe 2006) is
less efficient than BF-SS (Baele et al. 2012). For each data
set, we computed the log-likelihoods (ln K) under the IBR
and ABR models. The BF posterior probability for ABR was
calculated as shown in Dos Reis et al. (2018). We used only
one calibration point at the root (true age with a narrow
uniform distribution) in all the Bayesian analyses, as it is the
minimum number of calibrations required by MCMCTree
(Yang 2007). For other priors, we used diffused distributions
of “rgene_gamma ¼ 1 1,” “sigma2_gamma¼ 1 1,” and
“BDparas ¼ 1 1 0.” In all Bayesian analyses, two independent
runs of 5,000,000 generations each were conducted, and
results were checked in Tracer (Rambaut et al. 2018) for con-
vergence. ESS values were higher than 200 after removing 10%
burn-in samples for each run.

Analysis of Empirical Data Sets
We used 17 data sets from 11 published studies of eukaryotes
and 2 published studies of prokaryotes that cover the major
groups in the tree of life (table 1). These data were selected for
relative completeness (missing data <50%) and large sample
size (>80 sequences). As we know, a large amount of missing
data (>50%) can result in unreliable estimates of branch
lengths and other phylogenetic errors (Wiens and Moen
2008; Lemmon et al. 2009; Filipski et al. 2014; Xi et al. 2016;
Marin and Hedges 2018) and potentially bias CorrTest results.
When a phylogeny with branch lengths was available from
the original study, we estimated relative rates directly from
the branch lengths via RRF (Tamura et al. 2018) and com-
puted selected features (qs, qad, d1, and d2) to conduct
CorrTest. Otherwise, maximum likelihood estimates of
branch lengths were obtained in MEGA 7 command line
version (Kumar et al. 2012; Kumar et al. 2016) using the
published topology, sequence alignments, and the substitu-
tion model specified in the original article. To examine the
impact of the specification of a time-reversible substitution
model on CorrTest, we estimated branch lengths under an
unrestricted substitution model (Yang 1994) for all the nu-
cleotide data sets in PAML (Yang 2007) and conducted
CorrTest.

To obtain the autocorrelation parameter (v), we used
MCMCTree (Yang 2007) with the same input priors as the
original study, but omitting calibration priors to avoid the
influence of calibration uncertainty densities on the estimate
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of v. We did, however, provide a root calibration because
MCMCTree required it. For this purpose, we specified the
root calibration as the one used in the original article or as
the median age of the root node in the TimeTree database
(Hedges et al. 2006; Kumar et al. 2017) 650 My (uniform
distribution with 2.5% relaxation on minimum and maximum
bounds). Bayesian analyses required long computational
times, so we used the original alignments in MCMCTree to
infer v if alignments were shorter than 20,000 sites. If the
alignments were longer than 20,000 sites, we randomly se-
lected 20,000 sites from the original alignments. However, one
data set (Ruhfel et al. 2014) contained more than 300 ingroup
species, such that even alignments of 20,000 sites required
prohibitive amounts of memory. In this case, we randomly
selected 2,000 sites from the original alignments to use in
MCMCTree for v inference (similar results were obtained
with a different site subset). Two independent runs were
conducted for each data set, and results were checked in
Tracer (Rambaut et al. 2018) for convergence. ESS values
were higher than 200 after removing 10% burn-in samples
for each run. All empirical data sets are available at https://
github.com/cathyqqtao/CorrTest (last accessed February 6,
2019).
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Ho SY, Duchêne S, Duchêne D. 2015. Simulating and detecting autocor-
relation of molecular evolutionary rates among lineages. Mol Ecol
Resour. 15(4): 688–696.

Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC,
Nabholz B, Howard JT, et al. 2014. Whole-genome analyses resolve
early branches in the tree of life of modern birds. Science 346(6215):
1320–1331.

Jayaswal V, Wong TK, Robinson J, Poladian L, Jermiin LS. 2014. Mixture
models of nucleotide sequence evolution that account for hetero-
geneity in the substitution process across sites and across lineages.
Syst Biol. 63(5): 726–742.

Kimura M. 1980. A simple method for estimating evolutionary rates of
base substitutions through comparative studies of nucleotide
sequences. J Mol Evol. 16(2): 111–120.

Kimura M. 1983. The neutral theory of molecular evolution. Cambridge:
Cambridge University Press.

Kishino H, Thorne JL, Bruno WJ. 2001. Performance of a divergence time
estimation method under a probabilistic model of rate evolution.
Mol Biol Evol. 18(3): 352–361.

Kumar S. 2005. Molecular clocks: four decades of evolution. Nat Rev
Genet. 6(8): 654–662.

Kumar S, Hedges SB. 2016. Advances in time estimation methods for
molecular data. Mol Biol Evol. 33(4): 863–869.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular
Evolutionary Genetics Analysis across computing platforms. Mol Biol
Evol. 35(6): 1547–1549.

Kumar S, Stecher G, Peterson D, Tamura K. 2012. MEGA-CC: Computing
Core of Molecular Evolutionary Genetics Analysis program for au-
tomated and iterative data analysis. Bioinformatics 28(20):
2685–2686.

Kumar S, Stecher G, Suleski M, Hedges SB. 2017. TimeTree: a resource for
timelines, timetrees, and divergence times. Mol Biol Evol. 34(7):
1812–1819.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary
Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7):
1870–1874.

Kumar S, Subramanian S. 2002. Mutation rates in mammalian genomes.
Proc Natl Acad Sci U S A. 99(2): 803–808.

Lanfear R, Welch JJ, Bromham L. 2010. Watching the clock: studying
variation in rates of molecular evolution between species. Trends
Ecol Evol. 25(9): 495–503.

Lartillot N, Philippe H. 2006. Computing Bayes factors using thermody-
namic integration. Syst Biol. 55(2): 195–207.

Lartillot N, Phillips MJ, Ronquist F. 2016. A mixed relaxed clock model.
Philos Trans R Soc B 371(1699): 20150132.

Le TA, Baydin AG, Zinkov R, Wood F. 2017. Using synthetic data to train
neural networks is model-based reasoning. In: 2017 International

Joint Conference on Neural Networks (IJCNN). p.
3514–3521Anchorage, Alaska.

Lemmon AR, Brown JM, Stanger-Hall K, Lemmon EM. 2009. The
effect of ambiguous data on phylogenetic estimates obtained
by maximum likelihood and Bayesian inference. Syst Biol. 58(1):
130–145.

Lepage T, Bryant D, Philippe H, Lartillot N. 2007. A general comparison of
relaxed molecular clock models. Mol Biol Evol. 24(12): 2669–2680.

Linder M, Britton T, Sennblad B. 2011. Evaluation of Bayesian models of
substitution rate evolution-parental guidance versus mutual inde-
pendence. Syst Biol. 60(3): 329–342.

Liu L, Zhang J, Rheindt FE, Lei F, Qu Y, Wang Y, Zhang Y, Sullivan C, Nie
W, Wang J, et al. 2017. Genomic evidence reveals a radiation of
placental mammals uninterrupted by the KPg boundary. Proc Natl
Acad Sci U S A. 114(35): E7282–E7290.

Lu Y, Ran J-H, Guo D-M, Yang Z-Y, Wang X-Q. 2014. Phylogeny and
divergence times of gymnosperms inferred from single-copy nuclear
genes. PLoS One 9(9): e107679.

Lynch M. 2010. Evolution of the mutation rate. Trends Genet. 26(8):
345–352.

Magall�on S, Hilu KW, Quandt D. 2013. Land plant evolutionary timeline:
gene effects are secondary to fossil constraints in relaxed clock esti-
mation of age and substitution rates. Am J Bot. 100(3): 556–573.

Marin J, Hedges SB. 2018. Undersampling genomes has biased time and
rate estimates throughout the tree of life. Mol Biol Evol. 35(8):
2077–2084.

Meredith RW, Jane�cka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC,
Goodbla A, Eizirik E, Sim~ao TLL, Stadler T, et al. 2011. Impacts of the
cretaceous terrestrial revolution and KPg extinction on mammal
diversification. Science 334(6055): 521–524.

Metsky HC, Matranga CB, Wohl S, Schaffner SF, Freije CA, Winnicki SM,
West K, Qu J, Baniecki ML, Gladden-Young A. 2017. Zika virus evo-
lution and spread in the Americas. Nature 546(7658): 411–415.

Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen
PB, Ware J, Flouri T, Beutel RG, et al. 2014. Phylogenomics resolves
the timing and pattern of insect evolution. Science 346(6210):
763–767.

Moore BR, Donoghue MJ. 2007. Correlates of diversification in the plant
clade Dipsacales: geographic movement and evolutionary innova-
tions. Am Nat. 170(S2): S28–S55.

Pacheco MA, Matta NE, Valkiunas G, Parker PG, Mello B, Stanley CE,
Lentino M, Garcia-Amado MA, Cranfield M, Kosakovsky Pond SL,
et al. 2018. Mode and rate of evolution of haemosporidian mito-
chondrial genomes: timing the radiation of avian parasites. Mol Biol
Evol. 35(2): 383–403.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. 2011. Scikit-
learn: machine learning in Python. J Mach Learn Res. 12:2825–2830.

Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM,
Lemmon AR. 2015. A comprehensive phylogeny of birds (Aves)
using targeted next-generation DNA sequencing. Nature
526(7574): 569–578.

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior
summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol.
67(5): 901–904.

Robinson DF, Foulds LR. 1981. Comparison of phylogenetic trees. Math
Biosci. 53(1–2): 131–147.

Rosenberg MS, Kumar S. 2003. Heterogeneity of nucleotide frequencies
among evolutionary lineages and phylogenetic inference. Mol Biol
Evol. 20(4): 610–621.

Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG. 2014. From
algae to angiosperms-inferring the phylogeny of green plants
(Viridiplantae) from 360 plastid genomes. BMC Evol Biol. 14:23.

Saitou N, Nei M. 1987. The Neighbor-Joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol. 4(4): 406–425.

Saminadin-Peter SS, Kemkemer C, Pavlidis P, Parsch J. 2012. Selective
sweep of a cis-regulatory sequence in a non-African population of
Drosophila melanogaster. Mol Biol Evol. 29(4): 1167–1174.

Detecting Rate Autocorrelation Autocorrelation . doi:10.1093/molbev/msz014 MBE

823

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/36/4/811/5299489 by Tem
ple U

niversity user on 25 April 2019



Sanderson MJ. 1997. A nonparametric approach to estimating diver-
gence times in the absence of rate constancy. Mol Biol Evol. 14(12):
1218–1231.

Sargis EJ, Dagosto M, editors. 2008. Mammalian evolutionary morphol-
ogy: a tribute to Frederick S. Szalay. Dordrecht: Springer.

Schrider DR, Kern AD. 2016. S/HIC: robust identification of soft and hard
sweeps using machine learning. PLoS Genet. 12(3): e1005928.

Schrider DR, Kern AD. 2018. Supervised machine learning for population
genetics: a new paradigm. Trends Genet. 34(4): 301–312.

Shao S, Quan Q, Cai T, Song G, Qu Y, Lei F. 2016. Evolution of body
morphology and beak shape revealed by a morphometric analysis of
14 Paridae species. Front Zool. 13:30.

Shen X-X, Zhou X, Kominek J, Kurtzman CP, Hittinger CT, Rokas A. 2016.
Reconstructing the backbone of the Saccharomycotina yeast phy-
logeny using genome-scale data. G3 6(12): 3927–3939.

Smith SA, Beaulieu JM, Donoghue MJ. 2010. An uncorrelated relaxed-
clock analysis suggests an earlier origin for flowering plants. Proc Natl
Acad Sci U S A. 107(13): 5897–5902.

Takezaki N. 2018. Global rate variation in bony vertebrates. Genome Biol
Evol. 10(7): 1803–1815.

Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S.
2012. Estimating divergence times in large molecular phylogenies.
Proc Natl Acad Sci U S A. 109(47): 19333–19338.

Tamura K, Tao Q, Kumar S. 2018. Theoretical foundation of the RelTime
method for estimating divergence times from variable evolutionary
rates. Mol Biol Evol. 35:1170–1782.

Thorne JL, Kishino H, Painter IS. 1998. Estimating the rate of evolution of
the rate of molecular evolution. Mol Biol Evol. 15(12): 1647–1657.

Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N,
Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA, et al.
2014. Phylotranscriptomic analysis of the origin and early diversifica-
tion of land plants. Proc Natl Acad Sci U S A. 111(45): E4859–E4868.

Wiens JJ, Moen DS. 2008. Missing data and the accuracy of Bayesian
phylogenetics. J Syst Evol. 46:307–314.

Wikström N, Savolainen V, Chase MW. 2001. Evolution of the angio-
sperms: calibrating the family tree. Proc R Soc B 268(1482):
2211–2220.

Willcock S, Mart�ınez-L�opez J, Hooftman DAP, Bagstad KJ, Balbi S,
Marzo A, Prato C, Sciandrello S, Signorello G, Voigt B, et al.
2018. Machine learning for ecosystem services. Ecosyst Serv.
33:165–174.

Wyles JS, Kunkel JG, Wilson AC. 1983. Birds, behavior, and anatomical
evolution. Proc Natl Acad Sci U S A. 80(14): 4394–4397.

Xi Z, Liu L, Davis CC. 2016. The impact of missing data on species tree
estimation. Mol Biol Evol. 33(3): 838–860.

Xie W, Lewis PO, Fan Y, Kuo L, Chen M-H. 2011. Improving marginal
likelihood estimation for Bayesian phylogenetic model selection. Syst
Biol. 60(2): 150–160.

Yang Z. 1994. Estimating the pattern of nucleotide substitution. J Mol
Evol. 39(1): 105–111.

Yang Z. 2007. PAML 4: Phylogenetic Analysis by Maximum Likelihood.
Mol Biol Evol. 24(8): 1586–1591.

Yang Z. 2014. Molecular evolution: a statistical approach. Oxford: Oxford
University Press.

Tao et al. . doi:10.1093/molbev/msz014 MBE

824

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/36/4/811/5299489 by Tem
ple U

niversity user on 25 April 2019


	msz014-TF1
	msz014-TF2
	msz014-TF3
	msz014-TF4
	msz014-TF5
	msz014-TF6
	msz014-TF7

